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ABSTRACT ment sources are published nowadays on the so-called Web of Data,
Query optimization in RDF Stores is a challenging problem as along with numerous vocabularies and conceptual schemas from

SPARQL queries typically contain many more joins than equivalent e-§cie_n_ce, aiming to facilitate annotation and interlinking of both
relational plans, and hence lead to a large join order search spaceSCientific and scholarly data.
In such cases, cost-based query optimization often is not possible.
One practical reason for this is that statistics typically are missing
in web scale setting such as the Linked Open Datasets (LOD). The
more profound reason is that due to the absence of schematic struc
ture in RDF, join-hit ratio estimation requires complicated forms
of correlated join statistics; and currently there are no methods to
identify the relevant correlations beforehand. For this reason, the
use of good heuristics is essential in SPARQL query optimization,
even in the case that are partially used with cost-based statistics
(i.e., hybrid query optimization). In this paper we describe a set of . . -
useful heuristics for SPARQL query optimizers. We present these _C'al RDF stores still shows problematic q_uery_performance, ty_p-
in the context of a neweuristic SPARQL PlanneHSP) that s~ \cally caused by bad query plans, especially in complex queries
capable of exploiting theyntacticand thestructural variations of su_ch as those found in analytical workloads. Compa_rln_g to re-
the triple patterns in a SPARQL query in order to choose an execu- lational database SYStems’ current S.PARQL. query opt|m|zers are
tion plan without the need of any cost model. For this, we define the I(a_ss mature, yet typlcally_arg faced with queries that consist of_5|g-
variable graph and we show a reduction of the SPARQL query opti- nl_flc._emtly more jons. This is due to the RDF data model, which
mization problem to thenaximum weight independent geoblem. e_llmlnates an explicit sch_ema underlying the data, such that_eyery
We implemented our planner on top of the MonetDB open source single accessed column in a query leads to yet another self-join to

column-store and evaluated its effectiveness against the state-of-tEe SO'Ca"?d triplehtable, t)t;picagy used fok: storing RDF data. In
the-art RDF-3X engine as well as comparing the plan quality with the case o _RDF' the 905t' ased approac to query optimization —
a relational (SQL) equivalent of the benchmarks. successful in the relational field — often does not give good results.

In many use-cases, where SPARQL users are accessing LOD
data sources, typically reachable over an URI and often freshly (re-
1. INTRODUCTION )loaded, the database may not have available statistics (e.g., his-
During the last decade we have witnessed a tremendous increasg¢ograms) needed for cost-based optimization. Moreover, in RDF
in the amount of semantic data available on the Web in almost it is not immediately clear on what to create statistics, as the data
every field of human activity. More and more corporate, govern- s essentially a directed labelled graph, where the same predicates
mental, or even user-generated datasets break the wadlsvate may be used between multiple sub-classes of subjects/objects (and
management within their production site, and become available for where these sub-classes are not explicitly declared or recognisable),
future analysis by potential data consumer applications or services.and in which predicates themselves may also re-appear as subjects
For example, knowledge bases with billions of RDF triples from and objects, mixing data and metadata in this one big graph.
Wikipedia, U.S. Census, CIA World Factbook, open government  Even if we consider the extreme case of purely tabular data stored
sites in the US and the UK, national museums like the British as RDF, such that the underlying graph is of perfectly regular shape,
Museum as well as international institutions, news and entertain- the job of a SPARQL query optimizer compared to a relational
one is significantly more complex, not only because of the larger
amount of (self-) joins, but also because it is not trivial to estimate
Permission to make digital or hard copies of all or part of thiknfor the.JOIn. hlt_.ratlos I.n the SPARQL case. .Where.as Correl.at?d (.ZOSt
personal or classroom use is granted without fee providatidbpies are estimation Is ConSIdereq arare pro.blem In.relatlo.nal optimisation,
not made or distributed for profit or commercial advantage aatidbpies only necessary for special cases, it is a basic requirement fot-a cos
bear this notice and the full citation on the first page. Toyoofherwise, to based SPARQL optimizer. The problem of keeping correlated join
republish, to post on servers or to redistribute to listguies prior specific hit-ratio statistics is very hard to solve in the general case, as there
permission and/or a fee. are almost infinite potentially relevant correlations, such that it is

EDBT 2012 March 26-30, 2012, Berlin, Germany. not clear which statistics a SPARQL query optimizer should kee
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This emerging global space, which connects data across domains,
aims to support a new generationd#cision supporandbusiness
intelligenceapplications for individual users and communities in
diverse areas. A central issue in this context is the meaningful ma-
nipulation and usage of large volumes of semantic data. In particu-
lar, we are striving for effective and efficient storage and querying
techniques for semantic data expressed in RDF, the lingua franca of
the Linked Open Data (LOD) initiative and hence the default data
model for the Web of Data.

However, the current state of the art in the available commer-



and search during query optimization. As aresult, RDF stores, even real RDF datasets. In all queries of our workload, HSP pro-

if they rely on cost-based statistics for certain kinds of predicates duces plans with theame numbeof mergeandhashjoins

(such as selections, or certain well-known joins) will in many other as CDP. Their differences lie on the selection of ordered vari-

cases have to rely dmeuristicsanyway. ables, as well as the execution order of joins, which in turn
A different approach to solve this problem is to devigairistic- affects the size of the intermediate results.

basedjuery optimization techniques without the need of any knowl-

edge of the stored dataset. To this end, we propose thkdinsistic- Compared to existing approaches for SPARQL query planning,

based SPARQL planner (HStat is capable of exploiting the syn-  HSP exhibits some original featurea) unlike most SQL-based
tactic and structural variations of tiieple patternsin a SPARQL SPARQL engines, such as SW-Store [3], Oracle RDF [7], Sesame
query in order to choose a near to optimal execution plan without [6], Virtuoso RDF [9], HSP is capable of rewriting SPARQL queries
the need of any statistics. Based solely on the syntax of a SPARQL in order to exploit as much as possible the ordered triple relations,
query, we can decide which parts to evaluate first in order to quickly as well to impose selections and join ordering using RDF-specific
reduce the intermediate results. Similarly, we can decide the join heuristics, and avoids the false sense of precision of relying on
order and maximize the number of merge-joins by looking at a vari- purely relational cost-based methods (which fail to capture join-
ation of a SPARQL join graph, which we define as the SPARQL selection correlations prevalent in SPARQL queribgyather than
variable graph relying on partial statistics on equi-selections, leaf-level joins and
The heuristic-based optimisation techniques introduced in this cached path expressions, as found in Hexastore [39], RDF-3X [22]
work can be applied in a centralised but also in a distributed and and YARS2 [13], HSP shows how far one can get by rel\@rglu-
parallel setting such as the Cloud. The main contributions of our sivelyon heuristics. Our experiments with available benchmarks,
work are: show that the query optimization results achieved by HSP are com-
parable with the state-of-the-art, and could only get better if com-
e We propose a set of heuristics for deciding which triple pat- bined with certain cost- and statistics-based approaches that apply
terns of a SPARQL query are more selective, thus it is in the to RDF, as used by the latter class of systems, to construct in the
benefit of the planner to evaluate them first in order to reduce future hybrid optimization strategies.
the memory footprint during query execution. These heuris-  The rest of the paper is organised as follows. Section 2 discusses
tics are generic and can be used separately or complementaryrelated work and in Section 3 we shortly present the basics of RDF
to each other, and also in traditional cost-based optimisers to and SPARQL. In Section 4 we present the heuristics in which HSP
create a hybrid planner. is based on. Section 5 details the reduction to the maximum weight
independent set problem for achieving the maximum number of
e We propose the firgteuristics-based SPARQL planner (HSP) merge joins and discusses our heuristic-based planner. In Section 6
based on these well-argued heuristics that exploit the syntac-we present our experimental findings and conclude in Section 7.
tic and structural clues found in SPARQL queries. In partic-
ular,HSPtries to produce plans that maximise the numberof 2 RELATED WORK
merge joins, reduce intermediate results by choosing triples
patterns most likely to have high selectivity, and determines
the evaluation order based on the structural characteristics.

SPARQL query processing engines can be distinguished into two
broad categoriesRDF nativeand SQL-basednes. The former
propose main-memory resident indexes for RDF triples which are
e To achieve the maximum number of merge joins, we de- employed during SPARQL processing (mostly for favaluating se-

fine a new structure called SPARQfariable graph which lections), Whgreas the latter store RDF data either in a large triple

is a variation of the SPARQL join graph. We then present table 6pg or in smaller property tables (e.gi9) [34] and rely on

an original reduction of the query planning problem to the the optimization technlqyes of the untljerlylng DBMS to efficiently

problem finding themaximum weight independent seih evaluate SPARQL queries. The majority of the systems replace

a variable graph, nodes are query variables that are part of constants (i.e., URIs and literals) appearing in RDF triples by iden-

more than one join, and edges denote joins between theselifiers using a mapping dictionary to avoid processing long strings.

variables. The qualifying independent sets are translated to ~ YARS2 [13] is a native RDF processing system that builds in
blocks of merge joins, connected between them with other Main memory a set of six sparse indexes on a subset of the combi-

types of more costly joins (e.g., hash joins) supported by the nations of RDF triple components. It also uses a keyword index to
underlying engine. support efficient lookups of RDF constants. HPRD [5] instead uses

only three triple indexespo, po, odmplemented as B+-trees as

e We implemented thélSP planner on top of ampen source well as a path index to accelerate the evaluation of SPARQL path
columnar DBMSthe MonetDB system [20]. We focused on  queries (i.e., queries that involve long chains of triple patterns). The
the efficient implementation diSPlogical plans to the un- matching data for each path query is extracted and stored in the
derlying MonetDB query execution engine, i.e., the physical path index to accelerate path evaluation. Consequently, the eval-
algebra of MonetDB. The main challenge stems from the de- uation of path queries can be translated into the problem of sub-
composed model of rows in a columnar database. A main sequence matching. Finally, HPRD relies on information regarding
difference between our plans and the plans produced by thethe number of occurrences of triple patterns in an RDF dataset to
cost-based standard SQL optimiser of MonetDB is that we estimate the size of the intermediate results and decide join order-
producebushyrather tharleft-deepquery plans to facilitate ~ ing (similar to the aggregated indexes of RDF-3X [22]). Hexas-

the idiosyncrasies of SPARQL query plans. tore [39] is another native RDF processing system that builds six
indexes for every possible collation order of triple components in
e \We have experimentally evaluatdte qualityandexecution addition to the indexeso of property tables. In contrast to these
time of the plans produced bHSP with the state-of-the- works, we are using six sorted relations stored as regular tables

art cost-based dynamic programming algorithm (CDP) em- in MonetDB as access paths instead of indexes. In addition, we
ployed by RDF-3X [22] using synthetically generated and provide a heuristic-based algorithm for deciding how these access



paths are exploited in query plans. Structured indices proposed forjoins as possible per join variable by employing &ely elimi-
RDF graphs as GRIN [36] and BitMat [4] are outside the scope of nation heuristic We follow a similar approach in which we try
our work. to maximize the number of merge joins by grouping together the
RDF-3X [22, 23, 24] is a native-RDF system that relies heav- triple patterns that share a common variable. The ordering of joins
ily on the use of indexes to process SPARQL queries over com- for a specific job is chosen with the use of statistics whereas in our
pressed RDF triples. In particular, triples are compressed by lexi- work the identification of join orders is done using only heuristics.
cographically sorting them and storing only the changes between SQL-basedSPARQL systems [2, 3, 7, 18] store RDF triples in
them. RDF-3X builds alusteredB+tree index with composite large triple table [7, 18] or in property tables [2, 3]. Contrary to
keys over every possible collation order of triple components. Fur- our work where we use a large triple table, SW-Store [2, 3] uses
thermore, RDF-3X useaggregated indexefor each of the three vertical partitioning to store RDF triples in the C-Store [33] col-
possible pairs of triple components and in each collation osfer (1 umn store database. Standard indexes orsted o columns of
S0, psetc.). Each index stores the two columns of a triple on which property tables are implemented aslered columns. SPARQL
it is defined and an aggregated count that denotes the number ofqueries are translated into their equivalent SQL ones and query
occurrences of the pair in the set of triples. Aggregated indexes optimization is taken care by the C-store engine. In the work by
that are organized in B+-trees, are much smaller than the full-triple Chong et. al. [7] RDF triples are stored in a giant triple table in
indexes and are used to avoid decompressing duplicate triples inOracle DBMS [25]. Materialized join views on the triple table,
the final query results. In addition, RDF-3X builds all three one- andsomaterialized join views are built to speed up query process-
value indexes that hold for every RDF constant the number of its ing. SPARQL queries are translated into SQL ones that employ the
occurrences in the dataset. Finally, it builds indexes on frequently RDF_MATCH table function to evaluate the joins. This table func-
occurring data paths that store exact join statistics for them. All tion uses the materialized join views and Oracle’s query optimiza-
the above indexes are exploited for query optimization. Despite tion techniques for efficient query processing. Virtuoso [10] fol-
the exhaustive indexing employed by RDF-3X, the size of the in- lows a similar approach to the previous one for the storage of RDF
dexes does not exceed the size of the dataset thanks to the comtriples and the translation of SPARQL queries into their equivalent
pression scheme. Query processing relies mostly on merge joinsSQL ones. Lu et. al. [18] store RDF triples in a large triple table in
over the sorted indexes discussed previously. The query optimizerDB2. SPARQL queries are translated into SQL ones in a form that
of RDF-3X (CDP) uses dynamic programming for the enumera- allows them to be directly included as sub-queries of other SQL
tion of plans. It relies on a cost model to estimate the number of queries. Despite the elaborate cost-based query optimization tech-
intermediate results based on statistics. This information is used niques, commercial SQL optimizers are based on cost models that
by the planner to decide the join order and algorithms to be used do not work well for RDF. This is due to the absence of a logi-
for join evaluation. In contrast, our heuristic-based SPARQL plan- cal schema, which along with integrity constraints could be used
ner HSP produces plans with the same number of merge and hashto devise plans that would efficiently evaluate a very large number
joins using solely the heuristics described in Section 4. It is worth of self-joins. A standard relational optimizer can estimate only the
also noticing that unlike traditional SQL optimizers (featuring left- cost of scan operators but does not have any information related to
deep plans), both CDP and HSP produce bushy plans capable ofoin patterns that appear in SPARQL queries. Stocker et. al. [32],
executing the maximum number of identified merge joins. Finally, Neumann et. al [23, 21] discuss cardinality estimation techniques
the work by Neumann et. al [22] extends RDF-3X by exploring for RDF data that could be used to enhance existing SQL optimiz-
sideways information passing run-time optimization techniques for ers for supporting efficient SPARQL processing. In our work we
scalable RDF query processing. tackle this issue by proposing a numbeRIDF-specific heuristics
Hartig et. al. [14] discuss a SPARQL query graph model (SQGM) rather tharRDF-specific statisticembedded in relational optimiz-
and a set of operators to model the SPARQL operations (join, union ers which are expensive to build and maintain, especially for large
etc.). The work focuses mostly on how SPARQL queries are rewrit- scale and evolving RDF datasets.
ten into SQGM ones. Similarly, Stocker et. al. [32] propose stan-
dard relational algebraic rewritings for SPARQL queries. Finally, 3. RDF AND SPARQL
SehiaL et . 50] st e et of cualences over e SPARQL e Resource Descrpton Frameork (ROF) (19,3 WA ec-
Moreover, this work proposes an approach to semantic query opt.i- ommendation, is used for repre;entlng information about Web re-
mization ’based on the classical chase algorithm that is orthogonalsources' It er_1ab_|es th_e encoding, exchange,_ ar_ld reuse of struc-
' tured data, while it provides the means for publishing both human-

\t;otrrllz 5{2:&?;!?};;%?;5'2%25tzlz W]%riI:" 0’:‘ doenrz gfrlzjhjeoiarl]b\(/);rei- r_eadable an_d m_achine-processable voca_bularies. It_is_ gs_ed in ava-
ables) are found as we do in our wo.rk” In the work by Vidal et rlety_of _appllcatlon areas, such as the Linked Data initiative [17].

: : o " Its aim is to connect different data sources on the Web, and it has
al. [38] RDF triples are stored in a large triple table and a set of become very popular by exposing many data sets using RDF. DB-
physical operators are proposed for efficiently implementing star- pedia, BBC music information [16], and government dataseté are
shaped queries. In this work, a randomized cost-based optimizationonIy féw examples of the constantly,increasing Linked Data Cloud
strategy is adopted to determine the most cost-effective plan among RDF is based on a simple data model that makes it easy for aF’)_

a set of execution plans of any shape (bushy, left deep etc.). The lications to process Web data. In RDF everything we wish to de-

fﬁ:ts‘gla;%gi?pggﬁg.reu:és;]tdagit.gstz?glét;tr;?ni'iﬁi ?;grrzgizt'iso’rﬁ'j@cribe is aresource A resource may be a person or an institution,
y ) ) P or the relation a person has with that institution. A resource is

nent star-shapeq joins. In our work, we a_re_able to produce near touniquely identified by its Universal Resource Identifier (URI). The
Opt'”?a' plans without the use of any Stat'St.'CS’ and we rfaly on the building block of the RDF data model isteple. A triple is of
physical operators of Monet.DB for evaluating the .re.sult!ng UETY" the form (subject, predicate, objectyhere thepredicate (p)(also
plans. Husalr) et._ al_. [15] discuss RDF query_optlr_mzanon in the called property) denotes the relationship betwesuabject (s)and
cloud. The objective is to produce plans that mimimize the number object (0) An RDF graphis a set of triples. The nodes of such

of jobs. For this, the authors try to group together in a job as many a graph represent the subjects and objects, while the labeled edges



the predicates. We give the following definition. where?u1, 7us, . .. are variablesip:, tpo, . . . are triple patterns
as defined in Definition 3, and ‘.’ is the join operator of SPARQL.
DEFINITION 1. An RDF triple (subject, predicate, object) is In such a join query, a variabl that appears in many triple pat-

any element of the séf = U x U x (UU L), whereU and L ternstps, tps, . . . implies a join between these triple patterns. The
are disjoint,U is the set of URIs, antl the set of literals. A setof  set of variables that appear in tisELECT clause are called the
RDF triples is called an RDIgraph projectionvariables and are part of the answer of the query.

The answer of a SPARQL query withseL ECT clause is a set
An example of a set of triples is shown in Table 1. These triples of mappingswhere a mapping (i.e., the SPARQL analog of the re-
are part of the SHBench SPARQL benchmark dataset [29]. lationalvaluatior) is a set of pairs of the forrfvariable, value) For
SPARQL [27] is the official W3C recommendation for query-  example, the result of the evaluation of the previous query example
ing RDF graphs. SPARQL is based on the concept of matching over the set of RDF triples in Table 1 is the following mapping:
graph patterns The simplest ones are callédple patterns and
they resemble an RDF triple, but they may have a variable in any of {(?yr,"1940"), (?j rnl , sp2bench:Journal1/1940)}
the subject, predicate, or object positions. A query that contains a
conjunction of triple patterns is calldshsic graph patternA basic 4. OPTIMIZATION HEURISTICS
graph pattern matches a subgraph of the RDF graph when variables ¢ 10 the fine-grained nature of RDF data — where a triple is
of the graph pattern can be substituted with RDF constants (URI'S st 5 narrow tuple with three attributes — SPARQL queries involve

and literals) in the graph. In order to define formally a triple pat- 3 |arge number of joins. Such joins dominate the query execution
ter, in addition to the sets andIL we define an infinite se¥’ of time. In addition, RDF data does not come with schema or integrity
variables. constraints, therefore, a query optimiser cannot take advantage of
such information to produce an efficient query plan. Another ap-
proach for query optimization is needed, one based on the observa-
tion that the syntactical form of a SPARQL query reveals informa-
tion about the data to be accessed. We advocate the use of heuristics
to determine the query execution plan, instead of maintaining costly
statistics for the stored data. Due to the highly distributed, volatile,
and ever-changing nature of semantic data, a cost-based optimizer
is likely to under-perform more often because of outdated statistics.
A SPARQL join query consists of numerous costly joins. The

DEFINITION 2. A SPARQL triple pattern is any element of the
set7P = (UUV) x (UUV) x (UULUYV), whereV is the set
of variables.

A SPARQL graph pattern is defined recursively as follows:

e Atriple patternP is the simplest graph pattern.

e If P, and P, are triples patterns, then expressidns. Ps, first and foremost important goal is to maximise the number of
Py OPTI ONAL P,, andP; UNI ON P, are graph patterns. merge joins in the query plan. A merge join in this context is most
commonly a sort-merge join, or any other join that takes advan-
e If Pisagraph pattern ard is a SPARQL built-in condition, tage of the existence of an index. In the next section we present
then the expressioR FI LTER C'is a graph pattern. our approach to achieve this goal. An equally important goal is

to minimize intermediate results in order to minimize the memory

The SPARQL syntax follows the SQL select-from-where para- footprint during query execution. This is achieved by choosing the

digm. TheseLECT clause specifies the variables that should ap- most selective triple patterns to evaluate first. Traditionally, de-

pear in the query results. Each variable in SPARQL is prefixed with ciding which triple patterns are more selective relies on statistics.
character?. The graph patterns of the query are defined with the Here, we have compiled a set of heuristics, based on the syntactical

WHERE clause. Finally, & LTER expression specifies explicitly a  form of triple patterns, to determine the more selective ones.
condition on query variables. For example, the following SPARQL

query asks for the year and the journal with titldour nal 1 HEURISTIC 1 (Triple pattern order). Given the position and the
(1940) " that was revised i 1942" . number of variables in a triple pattern we derive the following or-

) der, starting from the most selective, i.e., the one that is likely to
SELECT ?yr, ?jrnl produce less intermediate results, to the least selective.

WHERE {?] r nl rdf:itype bench:Journal .
?j rnl dctitle"Journal 1 (1940)" .

?j rnl dcterms:issued ?yr . (s,p,0) < (s,7,0) < (7,p,0) < (s,p,7) <
?j rnl dcterms:revised ?rev .
FI LTER (?rev="1942")} <(?,7,0) < (5,7,7) < (?,p, ) < (?,7,7)

The above ordering is based on the observation that given a sub-
ject and an object there are only very few, if not only one, prop-
erties that can satisfy the triple pattern. Similarly, it is very rare
éhat a combination of a subject and property has more than one ob-
ject value. In the same line of thinking we derive the rest of the
orders. There can only be few subjects that have the same value
for a property, while there are more many subjects with the same
property no matter the object value. Finally, if a query pattern has
2 variables, then objects are more selective than subjects, and sub-

To simplify our study and presentation of our algorithms, we
relax the notation and the definition of the SPARQL queries and
restrict them to onlyjoin queries Our simplification serves our
purposes since the join and selection operations are paramount, du
to their cost, to query optimisation.

DEFINITION 3. A SPARQLjoin queryis defined as a set df
triples patternsQ = {tpo, . . ., tpx }-

Such a SPARQL join query has the simpler form: jects more selective than properties. An exception to this rule is
when the property has the valuef : t ype, since that is a very
SELECT ?uq, Tuz, .. . common property and thus these triples should not be considered

WHERE  {tp:1.tp2.tps....} as selective.



subject (s) predicate (p) object (0)
t1: | sp2b:Journall/1940 rdf:type sp2b:Journal
ta: | sp2b:linproceedingl7 rdf:type sp2b:Inproceedings
ts: | sp2b:Proceedingl1/1954 | dcterms:issued | " 1954"
ts: | sp2b:Journall/1952 dc:title "Journal 1 (1952)"
ts: | sp2b:Journall/1941 rdf:type sp2b:Journal
te: | sp2b:Article9 rdf:type sp2b:Article
t7: | sp2b:Inproceeding40 dc:terms "1950"
ts: | sp2b:lnproceeding40 rdf:type sp2blnproceedings
to: | sp2b:Journall/1941 dc:title "Journal 1 (1941)"
t10: | sp2b:Journall/1942 rdf:type sp2bJournal
t11: | sp2b:Journall/1940 dc:title "Journal 1 (1940)"
t12: | sp2b:Inproceeding40 foaf:homepage | "http://ww. dielectrics.tld/..."
t1s: | sp2b:Journall/1940 dcterms:issued | " 1940"

Table 1: A set of RDF triples from the SP?Bench Dataset

can be employed in our heuristic SPARQL planner for choosing the
HEeuURISTIC 2 (Distinct position of joins) The different positions in best set of triple patterns to consider for merge joins.
which the same variable appears in a set of triple patterns captures

the number of different joins this variable participates in. A vari- 5 HEURISTIC-BASED SPARQL PLANNER

able that appears always in the same position in all triple patterns, ) T ] )
for example as subject, entails many self joins with low selectivity. ~ Our main objective is to produce query plans with thaximum

On the other hand, if it appears both as object and property, chancedumber of merge joinsvierge joins make use of the ordering of the
are the join result will be smaller. The following precedence rela- 0ining attributes to achieve better execution times. In this work we
tion captures this preference: assume that the RDF data are stored in a triple table, and that all
possible ordering combinations are also present. This is a common
tactic in state-of-the-art RDF storing solutions [9, 31]. We refer to
these six orderings apo, sop, ops, 0sp, pos, psdther systems
wheres, p, o refer to the subject, property, and object position of use clustered B-trees [22], or vertical partitioning [2]. However,
the variable in the triple pattern. This ordering stems from our ob- the design of our planner is such that it is easy to adjust to these
servations while studying RDF data graphs. RDF data graphs tenddifferent approaches for storing RDF data. The commonality is
to be sparse with a small diameter, while theretarenodes, usu- that they all provide variouaccess pathto the stored data, that is
ally subjects. As a result, query graph patterns that form linear they provide different ways to fast access data through indexes.
paths are more selective. We reduce the problem of maximising the total number of merge
joins to the problem of finding themaximum weight independent
HEuURISTIC 3 (Triples with most literals/URIs)This heuristic is setsin an RDFvariable graph In graph theory, aindependent set
a special subcase ofgiRISTIC 1 but can be used independently. is a set of vertices, no two of which share an edge [12]. If each
Triple patterns that have the most number of literals and URIs — or vertex of a graph= is assigned a positive integer (the weight of
symmetrically less variables — are more selective. This heuristic is the vertex) thenaximum weight independent set probleonsists
similar to the bound as easier heuristic of relational query process-in finding independent sets of maximum total weight, which is an
ing [37], according to which, the more bound components a triple NP-hard problem in general [11] and remains NP-hard even under
pattern has, the more selective it will be. restrictions in the forms of graphs. However, thariable graph
is much smaller, and with better structural properties, than an RDF
HEURISTIC 4 (Triples with literals in the object).An object of join graph, and thus an independent set can be easily found in a few
a triple pattern may be a literal or a URI. In such case, a literal is milliseconds in modern hardware.
more selective than a URI. This is true for RDF data because in  Intuitively the reduction to the maximum weight independent set
many cases if a URI is used as an object, it is used by many triples. is equivalent to finding the largest groups of triple patterns that can
be merge-joined on the same variable. The reduction is done by
HEURISTIC5 (Triple patterns with less projections)his heuristic modelling the query as\ariable graphwheres) nodes in the graph
allows us to consider as late as possible the triple patterns that con-are the variables that appear in the triple patterns of a SPARQL
tain projection variables. In the case in which the compared sets of graph,ii) two nodes are connected if and only if they belong to
triple patterns have the same set of projection variables, we preferthe same triple pattern, ariéi) a node has a weight, which is the
the set with the maximum number of unused variables that are notnumber of the triple patterns the corresponding variable appears in.
projection variables. Consequently, the nodes in thariable graphthat are returned as
part of an independent set, are the variables that are evaluated with
The above heuristics can be used in combination or separately formerge joins.
determining the order in which triple patterns should be evaluated, More formally, avariable graphis defined as follows.
and thus achieving smaller intermediate results. These heuristics
are suitable for different planning approaches, such as distributed DEFINITION 4. LetQ be a set of triple patterns of a SPARQL
environment, or hybrid optimizers where a cost model and heuris- join query as defined IDEFINITION 3. Thevariable grapiG(Q)
tics work together. In the next section we show how these heuristics is a weighted grapliz(Q) = (V, E, 3) whereV is the set of nodes,
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Input: SPARQL join queryQ
Output: mappingM : 7P — (V,P)
C + 0, a set of candidate variables
T «— @, a set of triple patterns
while (T" # 0) do
7 — (), a set of sets of variables
S « 0, a set of variables
Let G(T') be the variable graph constructed from the set
of triple patterns inT’;
determine all Maximum Independent Sets
Z — Max| ndepent endSet s(G(T));
if (|Z| > 1) then
7 «— apply HEURISTIC3INZ;
if (|Z| > 1) then
Z < apply HEURISTIC4 InZ;
if (]Z] > 1) then
7 < apply HEURISTIC2 InZ;
if (|Z] > 1) then
| Z — apply HEURISTIC5inZ;
end
end

end

end
S «— RandonChooseOne(Z);
C—CuUSs;
remove triple patterns froffi’ that are covered by a
variable in S;
T =T\ {tp| T,vars(tp) NS # 0};
end
forall the (c € C) do
Pick all triple patterns that have variable
T «— {tp € Q|c € vars(tp),tp & M.keys};
forall the (tp € T') do
| AssignOrderedRel ation(M,ip,c);
end

end
Assign to the remaining triple patterns an ordered relation
forall the (tp € Q, tp ¢ M.keys) do
| AssignOrderedRel ation(M, tp, nil);
end
Algorithm 1: HSP

E C V x Vs the set of edges, and : V — N is a weight
function.

The weight function3 assigns to each node of the variable
graph a weight equal to the number of triple patternsthegipears
in. The weight of the variable minus 1 captures the number of joins
this variable participates in.

?yr ?j rnl ?2rev
)
O——O—0O

Figure 1: An examplevariable graph

Figure 1 shows the variable graph of the SPARQL join query
example presented in section 3. There are 3 variables, namel
?jnrl, ?yr, and?rev. Variable?j nrl is present in four
triple patterns, hence it weight is 4, while the other two have a
weight of 1. There are two edges connecttigr | with ?yr and

?r ev, since they appear in triples together, but no edge between

?yr and?r ev since there is no triple containing both.

Notice that thevariable graphis different than the RDF join
graph. First, each variable in the variable graph appears only once,
while in the join graph it will appear as many times as the joins
it participates in. Second, the edges correspond to the triples and
not to the join relationships. As a result, many joins of one vari-
able collapse to only one node in thariable graph For finding
the maximum maximum weight independent sets ofuagable
graph, only the nodes that have weight greater than 2 will be con-
sidered, since only those are part of more than one join. For ex-
ample, thevariable graphof Figure 1 is trimmed down to only
one node, namelyj nrl, since the weight of botRyr and?r ev
is 1. Consequently, theariable graphis much smaller than a join
graph, and often much simpler to find the maximum weighted inde-
pendent sets, despite the hardness of the problem. We demonstrate
this also with our experimental evaluation in Section 6.

Next, we present the algorithm that implements Hweuristic
SPARQL Planner (HSHpr deciding the merge joins and the or-
dered relations (i.e., access paths) that will be used to evaluate the
query triple patterns.

Algorithm 1 depicts theHSP procedure in pseudo-code. HSP
accepts as input a SPARQL join quefy and returns a map,
where each triple pattern ¢f is mapped to an ordered relation and
the variable that will be part of a merge join, or nil if there is no join.
HSP first calls functiotvax| ndepent endSet s() [26] to deter-
mine all maximum weighted independent sets of the variable graph
G(T) and stores them iff. 7 is a collection of all maximum in-
dependent sets returned by functidx| ndepent endSet s() .

From all the possible candidates we have to choose one. Next, the
HSP algorithm applies heuristics 3, 4, 2, and 5 in order to choose
from all the different sets i the one that is more selective, i.e.,
the one that produces the smallest intermediate results according to
the heuristics presented in the previous section. If there are more
than one sets left i after the application of the heuristics, one
set is picked randomly. Next, the triple patterngpthat are used,

i.e., are covered by a variable in the picked independent set, are re-
moved from@ and the process is repeated for the remaining triple
patterns inQ, until all triple patterns are covered.

The next step of the HSP algorithm determines which ordered
relations should be accessed for each triple pattern according to
HEURISTIC 1. For each variable that is part of the selected inde-
pendent set, and for all triples that contain this variable, function
Assi gnOr der edRel ati on() determines the correct ordered
relation and updates the mapping structtwe

FunctionAssi gnOr der edRel ati on() is shown in Algo-
rithm 2. The input arguments aigthe map structur@ that stores
the ordered relation and the variabléo be used for each triple pat-
terntp of Q, 44) the triple patterrip, andii:) the variablev. If v is
nil, then the triple patternp is not part of a join, but of a selection
statement. Depending on the number of constants the appropriate
order is chosen from the 6 availalflevo, pos, pso, osp, ops, sop).

We use the help functiopos (tp, v) which returns eithep, s, or

o signifying the three possible positions, property, subject, or ob-
ject, that variabley might occupy in the triple pattertp. For ex-
ample, assume the input triple pattern is of the fdim u1, l2),
wherely, > are constants and; a variable, and is nil. Then

the ordered relation that should be accessed for this triple pattern
is (pos(tp, 1), p0s(tp,l2), POS(tp, u1). Now, pos(tp,lr) = s
sincel; appears in the subject position of the triple pattern. Simi-

yIarly, pos(tp,l2) = o, andpos(ip,u1) = p. Hence, the ordered

relation of this triple pattern isop

If v is not nil, then it participates in a merge join operation, thus
the ordered relation is determined by picking the one that first or-
ders the constants — if any — and immediately after the joining vari-



Input: mapM, triple patterntp, variablev of ¢p

if (v = nil) then

if (const(tp) = 2) then

tp has 2 constantg, [» and 1 variableus;
M.put (tp —

((pos (tp,11),pos(tp,l2), pos (tp, u1)), u1));
end

f (const(tp) = 1) then

tp has 1 constant; and 2 variableu , us;
M.put (tp —

((pOS (tpa 11)7 pos (tp7 u1)7 pos (tp7 uQ))v ul))’

end
else
f (vars(tp) = 3) then

tp has 3 variables.y, us, v;

M.put (tp —

((pos (tp,v), pos(tp, u1), pos (tp, uz)), v));

end

f (vars(tp) = 2) then

tp has 1 constant; and 2 variabless,, v;
M.put (tp —

((pos (tp,11), pos(tp,v), pos(tp, u1)),v));

end

f (vars(tp) = 1) then

tp has 2 constant, [; and 2 variable;
M.put (tp —

((pOS (tpa 11)7 pos (tp7 u1)7 pos (U, tp))? U))’

end
end
Algorithm 2: AssignOrderedRelation

able, and last any remaining variables. For example, if the triple
pattern is of the forn{l., u1,v) wherel; is a constant and, v
variables, then sinceos(tp,l1) = s, pos(tp,u1) = p, and
pos (tp,v) = o, the relationpos (tp, 1), pos(tp, v), pos (tp, u1))
= sop is accessed.

After all triples are assigned an access path in the map structure
M, the join order has been determined and the HSP returns. De-
pending the underlying engine, a logical plan is produced.

6. EVALUATION
6.1 General Setup

To evaluate our work, we conducted the following two experi-
ments:(a) we first compared the quality of the plans produced by
our heuristic-basedSPARQL Planner (HSP) with those produced
by the cost-based dynamic programmipianner (CDP) of RDF-
3X[22] and(b) for each SPARQL query in our workload, we com-
pared the time needed to execute in MonetDB the HSP plan trans-
lated into MonetDB's physical algebra (MAL), as well as an SQL
translation of the SPARQL query, with the time needed by RDF-

and YAGO [1].

All experiments were conducted on a Dell OptiPlex 755 desk-
top with CPU Intel Core 2 Quad Q6600 2.4GHz with 8MByte L2
cache, 8 GBytes of memory and running Ubuntu 11.04 2.6.38-8-
generic x86_64. We used MonetDB5 11.2.0 [20] and RDF-3X
version 0.3.5. MonetDB was extended with the Redland Raptor
1.9.0 [28] parser to parse the RDF triples and store them as regular
tables in MonetDB. Both MonetDB and RDF-3X could import the
datasets in less than half an hour and run the queries in the order of
seconds. We performed only warm-cache experiments for which
we ran the queries 21 times without dropping caches, we ignored
the time of the first (cold) run and calculated the mean of the other
20 query runs.

6.2 Description of Datasets and Query Work-
load

In our experiments, we were able to scaleBénhch [29] syn-
thetic data only up to 50M triples since RDF-3X was not able
to load bigger dataséts In order to load the YAGO dataset in
MonetDB we had to manually perform some modifications: we re-
moved a number of invalid characters contained in YAGO’s URIs
(e.g.,<, >, etc.) that the Redland Raptor parser does not accept. In
addition, RDF-3X ignores the base URI and consequently cannot
distinguish between URkabc> and literal” abc”. We therefore
converted all literals of the original YAGO dataset to URIs using
as prefix the base URI of the corresponding RDF-XML file. By
removing duplicate triples, we obtained a dataset containing 16M
distinct triples. The modifications were necessary to ensure that
both systems yield the same results for the same query.

Our study of datasets (for a complete report see [35]) confirmed
the optimization heuristics we devised (Section 4). Regardieg-H
RISTIC 1 we observed that given a specific value for a subject and
object, there are only few properties that satisfy the specific triple
pattern. In addition, for given values for property and object in a
triple pattern, we obtained a small number of subjects that satisfied
it. Similarly, we found that it is very rare that a combination of
a subject and property have more than one object value. An ex-
ception to this rule is when the property has the valdé:t ype,
since it is a very common property and thus these triples should not
be considered as selective. The same was true for triple patterns
that have specific values for their property and object components.
Our findings were also verified by the study reported in [8]. In the
case of HEURISTIC 2, we observed that join pattepre< o returns
always zero results making it the most selective one. The same is
true for join pattens > p for the SBBench dataset, but not for
the YAGO dataset (the only dataset where a URI can appear both
as the property and subject of triples). Join patterr o returns
always (significant) fewer results than the remaining join patterns
(i.e., those that are specified on the same triple pattern component).
More precisely, joirp > p yields results that are 1 to 2 orders of
magnitude larger than s ando i o joins making it the least se-
lective. Comparing the last ones, the former usually produces one
order of magnitude less results than the latter.

3X to evaluate the CDP plan. We choose to compare with RDF-3X 10 benchmark the plans produced by HSP and CDP, we have
because it is a state-of-the-art engine that relies heavily on statis-Ch0sen to evaluate six conjunctive queries (and variations thereof)
tics for query planning. However, we have not implemented HSP from SI?Efen_ch and four queries from YAGO benchmarks. Due to
on top of RDF-3X because first, RDF-3X is a prototype implemen- SPace I|m|tfit|on we do not present in detail the SPARQL syntax of
tation with no easy to separate software stack between the planne@!! the queries we used. However, they can be found in [35] together
and the execution engine, and second, because RDF-3X relies S%According to RDF-3X installation instructions, RDF-3X cannot

heavily in statistics that would call for a complete overhaul to re- 1oaq datasets for which the data plus intermediate query results
move those features and substitute them with only heuristics. could exceed its virtual address space.

We rely on synthetic and real datasets and their query work- 2Signifies the number of triple patterns that participate in the star
loads for our experimentation. For this we used?B&nhch [29] join with the largest number of triples.




uery a a,b,c)_ a
# Triple Patterns 3 10 8 2 6 5 1 1 8 6 6 5
# Variables 2 10 8 2 5 5 2 1 6 4 7 7
# Projection Variables 2 1 1 1 2 2 2 1 2 1 1 3
#Shared vars 1 1 1 1 5 ! 0 0 ! 3 3 !
#TPswith O const 0 0 0 0 0 0 0 0 0 0 2 3
# TPswith 1 const 1 9 7 1 4 3 1 0 6 3 2 0
# TPswith 2 const 2 1 1 1 2 2 0 1 2 3 2 2
#Joins 2 9 7 1 5 4 0 0 7 5 5 4
Maximum star join 2 9 7 1 1 2 0 0 4 3 2 1
Join Patterns
#s=s 2 9 7 1 2 2 0 0 4 3 3 1
#p=p 0 9] 0 0 0 0 0 0 0 9] 0 0
#o=o0 0 9] 0 0 1 0 0 0 0 0 0 0
#s=0p 0 0 0 0 0 0 0 0 0 0 0 0
#s=o 0 0 0 0 2 2 0 0 3 2 2 3
#p=o 0 0 9] 0 0 0 0 0 0 0 0 0

Table 2: Query characteristics for SP?Bench and YAGO
with all relevant details. As can be seen in Table 2 these queries in-CDP formula:
volve a different number of triple patterns, variables and constants letre

featuring selections as well as different kinds of joins among them cost_mergejoin(le,lr) =

(i.e., star- and chain-shapeyion different columnar positions (i.e. cost_hashjoin(le,rc)
s, p, 9. Variables which are not shared among triple patterns (i.e.,
join variables), or appear in SPARQL projections and filtersuare . :
used We consider join queries that have differstructural char- with thelc being the smallest one.
acteristics(i.e., kind of joins) and queries whose triple patterns
have differentsyntacticcharacteristics (i.e, number of constants, 6.2.1 Query Plans
shared variables and their positions in the pattern). As can be seen in Table 4 for all the queries of our workload, our
Clearly, queries SP5 and SP6 are the simplest ones, featuringheuristic-based SPARQL plann@iSP) produces plans with the
selections with a different number of results. From the remaining same number ahergeandhashjoins as the ones produced by the
ones involving joins, queries SP2a and SP2b otf&fich contain  cost-based dynamic programming plangeDP) of RDF-3X with-
a single large star query and their triple patterns are mostly syntac-0ut the use of statistics. Their differencesdigly on join ordering
tically similar (i.e., their constants are found in the same position) and thetypeof join that will be performed on each variable. These
while YAGO queries Y1 and Y2 follow. Both contain medium star-  factors essentially affect the size of the intermediate results. The
joins with triple patterns that exhibit significant syntactical similar- sorted variables on which merge joins will be performed are cho-
ities. The remaining queries do not contain large stars, or in the Sen early on by the maximum weight independent set algorithm.
case in which they do, the involved triple patterns exhibit syntacti- HEURISTICS1 to 4 are then employed to determine the ordered
cal dissimilarities. relations on which the triple patterns will be evaluated as well as
In general our heuristics prove to be quite effective for queries the join order. HSP heuristics are proved to be quite effective in
whose triple patterns exhibit syntactical dissimilarities: they have choosing anear to optimal plarwhen queries exhibisyntactical
different number of constants (and/or shared variables) that aredissimilarities(i.e. their triple patterns feature constants and vari-
found in different positions. In the following we discuss howu ables in different positions).
RISTICS1 to 4 are employed for each query in our workload. More precisely, in the case of $Bench queries SP1, SP3(a,b,c),
We observed that the majority of the queries for both datasets SP4a, SP5, SP6 and YAGO query Y3, HSP produces exactly the
considered < s joins (suggesting star-shaped joins onsbeject same plans as CDP without using any cost-model. As a result the
component of the triple pattern), followed By o joins. The cost estimation of these plans is exactly the same in both systems
smaller the ratio of shared variables over triple patterns, the heavi- (see Table 3). Furthermore, selections in HSP and CDP are eval-
est are the star-shaped joins defined on the corresponding positiorHated for the same triple pattern on temeaccess path: ordered
of the triple pattern. This is the case of queries SP2a and SP2b,relation for HSP and full/aggregated index for CDP. For a subset
followed by query Y1. of the queries and more specifically queries SP3(a,b,c) and SP6 of
Besides join algorithms and variables on which merge joins are SP’Bench, and Y3 of YAGO, CDP uses the aggregated indgix-
performed (sorted variables), to compare the quality of the plans Stead of the full triple indexyz. This is due to CDP’s preference to
produced by HSP and CDP, we also estimated their cost using theUse aggregated indexes when SPARQL triple patterns contain one
cost model of RDF-3X [22]. In particular, we focus on the esti- Of more unused variables in order to keep only the useful values.
mation of intermediate results of joins since the selection cost is With the use of aggregated indexes CDP decompresses less triples
asymptotically the same in both systems (logarithmic for binary for the scan and selection operations, obtains smaller intermediate
search in MonetDB and for B+tree traversal in RDF-3X). Thus, in results, and hence smaller input relations for the join operations.
Table 3 we do not report the cost of simple selection queries SP5 Queries SP3(a,b,c) and SP4a are filtering queries. Unlike CDP,
and SP6. For the remaining join queries the costs of merge (de- HSP systematically rewrites filtering queries into an equivalent form

picted in bold face) and hash joins are estimated using the following involving only triple patterns. CDP does not perform this rewriting.
Instead, it executes an expensive join followed by the evaluation of

the filter (queries SP3(a,b,c)). SP4a is a special case in which the

100,000

300,000 + & + *¢

wherelc andrc are the cardinality of two join input relations,



a a C a
HSP | 32 | 873 | 830 | 487 100 | 105 | 354+953,381] 264+953,381
CDP | 32 31 54 487 100 [ 105 | 354+953,381| 299+858,461
[ | Y1 2 | Y | Y |
HSP | 12+300,054| 1+303,579 | 329+302,577] 327+763,749
CDP | 7+300,023 | 1.5+301,614| 328+302,577| 326+763,603

Table 3: The cost of HSP and CDP plans

[ Query | SP1] SP2a| SP2b| SP3(a,b,c) 2 SP4a| SP4b| SP5] SP6] Y1 [ Y2 [ Y3 | Y4 |
HSP
Merge Joins 2 9 7 1 3 2 0 0 5 3 4 2
Hash Joins 0 0 0 0 2 2 0 0 2 2 1 2
Type of Plan | LD LD LD LD B LD | LD LD B
CDP
Mergejoin 2 9 7 1 3 2 0 0 5 3 4 2
Hashjoin 0 0 0 0 2 2 0 0 2 2 1 2
Type of Plan | LD LD LD LD B B| LD | LD B B| B B
[SmiarPlans] ] x| x| VI VI <] VI VI X[ x[ V] %]
LD : Left Deep Tree, B : Bushy Tree
Table 4: Plan characteristics for SP?Bench and YAGO
query (without the FILTER) contains a cross product. CDP rec- -
ognizes the existence of the cross product at query compile time, | p
and hence it does not produce any plan. To be able to benchmark hj
CDP for these queries, we manually rewrote them into their equiv- (432)?
alent form by eliminating the FILTER expressions. As reported in
Table 4 HSP and CDP planners produce the same plan for queries / \
SP3(a,b,c) comprising two selections and one merge join on the - mj
subject position of the triple patterns ik s). On the other hand, >, D
for the light star query SP1 of $Bench that involves twe > s (56,535) (20,120)
joins, HEURISTICS3 and 4 are used to determine join ordering, as
well as the ordered relations on which selections are evaluated. [><];’ZJI scan(OSP) :”12 scan(OSP)
26.851) (16.348.563) [tp0] (7.141f (16.348.563) [tp1]
SELECT ?p / \ \
WHERE {?p ?ss ?cl. (tp0) & (OPS) & (PSO) &(PSO) &(OPS)
')p ?dd ?c2. (tpl) o = wordnet _village p = locatedIn p = locatedIn 0 = wordnet_site
?c1 rdf:type wordnet_village . (tp2) p = rdf:type (60.214) [tp3] (60.214) [tp5] P = rdf:type
?c¢1 locatedin ?X. (tp3) (69910 [12] (17633 4]
?c¢2 rdf:itype wordnet_site . (tp4)
?¢2 locatedin ?Y. (tp5) Figure2: HSP Plan for YAGO query Y3

}

query Y3). In addition, both planners for SP4a and Y3 choose to
execute the merge joins on the same variables. In the case of SP4a,
and since HSP cannot estimate the number of intermediate results,
SP*Bench query SP4a and YAGO query Y3 are to a great extent it randomly selects one of the two possible choices for executing
syntactically dissimilar. SP4a contains small chain joins whereas the hash joins that coincide for this query with the choices made by
Y3 contains small star joins (see Table 5) on variables found in dif- CpP.
ferent positions{ > s ands i o). In addition, the triple patterns The queries for which HSP fails to decide a near to optimal plan
the join variables participate in, have different number of literals. are those that contain large star joins, with triple patterns that ex-
Consequently, all our heuristics are effectively applied by HSP to hibit substantial syntactic similarities and consequently HSP heuris-
produce the same bushy plan as Cl{See Figure 2 for YAGO tics are not very effective. This is the case of heavy star-shaped
queries such as SP2a and SP2b.
For example, SP2a and SP2b queries form a joir s with
very similar triple patterns (only EURISTIC 3 is applied). HSP

Table5: Yago Query Y3

%In the query plans we write?%). andi<,. to denotemergeand
hashjoins respectively on variablear. We writeo¢o,q4(R) to de-
note aselectionoperation with conditiorrond on a sorted relation
(for HSP) or index (for CDP)R, andm,.rs t0o denote grojection
on the set of variablesars of the input relation. For readability  obtained by the evaluation thereof and when applicable the triple
purposes we include below each operation the number of triples pattern concerned by the operation.




Table 6: Planning time of HSP for all queries (in ms).

a a C
MonetDB/HSP | 19.52 3,267.01] 1,035.12] 80.92| 8.74] 12.55] 3,602.09] 1,766.29] 0.06 | 0.43
RDF-3X/CDP 0.25 355,50 1,000.75] 85.14 | 11.95[ 13.97| 3,634.60| 2,781.75] 0.10 | 22.85
MonetDB/SQL | 11.92 3,561 1,103 8291 961 1481 XXX 1 1,909.13| 0.09| 0.48
Table 7: Query Execution Time (in ms) for SP2Bench Queries (Warm Runs)
7|[ ?a
hj
Dq?mZ
(14.705)
/\ T,
DX omi 0 (OPS) dnet. |
14 79 0 = wordnet_movie hi
( = rdf:type D,
/\ (30 624) [tp5] (14.705)
X 7’"0] 0 (OPS)
(14.869) 0 = wordnet_movie
= rdf:type W
(30 624) [tp3] ?a >, 9m1
15 " o (PSO) (4.775) (23.574)
(5.966) p = directed
/\ (23.722) [tp4]
o (PSO) D] ™ mi o (POS) o (OPS)
a. 020) » = actedn a 0267)51 19 8051"12 p = actedIn o = wordnet_movie
5.5 192) - (9800 cusswa o ° i
o (0PS) o (PSO) o (OPS) o (PSO) o (POS) g (OPS)
o = wordnet_actor p = livesin o = wordnet_actor  p = livesin p =directed 0 = wordnet_movie
p = rdf-type (14.710) [tp1] p = rdf:type (14.710) [tp1] ~ (23.722) [tp4]  p = rdf:type
(22.858) [tp0] (22.858) [tp0] (30.624) [tp5)
(a) HSP (b) CDP
Figure3: HSP and CDP plansfor YAGO query Y2
SELECT ?a

WHERE {?a rdf:type wordnet_actor .
?alivesin?city .
?a actedin ?mi .

?ml rdf:type wordnet_movie .

?a directed ?2n2 .

?nR rdf:type wordnet_movie .

}

Table9: Yago Query Y2

For YAGO query Y1, HSP chooses to perform the majority of the

(tp0) involved merge joins on a single variable whereas CDP “breaks”
(tp1) this left deep subplan thus resulting in less intermediate results. In
(tp2) YAGO query Y2 (Table 9), HSP chooses to perform all the merge
(tp3) joins on one variable producing a left deep plan (see Figure 3(a)),
(tp4) whereas CDP produces a bushy one that reduces the size of inter-
(tpS) mediate results early in the plan (see Figure3(b)). In both queries,

HSP heuristics are not very effective in discovering an interesting
join order (except for lHURISTICS3, 5 for Y1 and 3 for Y2) due

to the syntactic similarities exhibited by the queries’ triple patterns.
Nevertheless, for the particular dataset the additional cost overhead
is very small (see Table 3). Finally, YAGO query Y4 is a chain-
shaped query consisting of 5 triple patterns, three of which do not

correctly discovers the sorted variable on which the merge join will contain any constant (makingeidrISTICS2, 3 the most effective

be performed, but chooses randomly among all possible join orders.ones). Hence, the query plan needs to scan the entire triple rela-
The distinguishable characteristic for both queries is related to the tion twice to evaluate the remaining patterns. Both HSP and CDP
size of the intermediate results that CDP uses to select the appropriplans perform the merge joins on the same variables, and the only
ate join ordering. SP4b is a complex star- and chain-shaped querydifference lies in the order of the two hash joins. As we can see
for which HSP and CDP produce plans with the same number of in Table 3 the random choice of the order of hash joins does not
merge and hash joins but defined on different variables. These plan-seriously penalize the cost of the generated HSP plan.

ning decisions explain the differences in the estimated plan costs We conclude this section by describing the SQL translation of
affecting more the evaluation of SP2a and SP2b than the evaluationSPARQL queries that will serve in the following as theeselineex-

of SP4b. As in the case of SP2a and SP2BURIsTIC 3 is the

most effective.

periment for the plans produced by the standard MonetDB/SQL op-
timizer. Since unlike HSP and CDP, the MonetDB/SQL optimizer



[ [ YI[ Y2 Y3[ Y4
MonetDB/HSP | 6.04 [ 8.65| 25.69] 2.32
RDF-3X/CDP_| 15.75] 9.95 | 81.20] 90.45
MonefDB/SQL | 7.69 | 9.07 | 538.65] 1,113

Table 8: Query Execution Time (in ms) for YAGO queries (Warm Runs)

produces only left deep plans, we could not translate the SPARQL deltas of ids (for literals and URIs) needs to be performed. For
gueries into SQL ones using exactly the same access paths as thosthe same reason performance gains are also exhibited in Y3 where
employed by HSP. We simply choose to evaluate each triple pat- MonedDB/HSP is 2.5 times faster than RDF-3X/CDP. This large
tern of the SPARQL query on the ordered relation that promotes difference in execution times for query Y3 is due to the fact that it
the use of binary search for selections and returns the variable with contains two joins, where one of the two inputs is the entire rela-
the most number of appearances in the query sorted, to maximizetion. In addition, CDP uses in its plan aggregated indexes, and it
(if possible) the number of merge joins. In the case in which a triple takes a substantial amount of time to decompress them.

pattern contains constants, we chose the ordered relation according For queries with different plans, and especially in the case in

to HEURISTIC 1. Thus, the MonetDB/SQL optimizer will under-
take the task of join ordering using runtime optimization techniques
(e.g., sampling).

6.2.2 Query Execution Times

In this section, we report for each SPARQL query in our work-
load, the execution time of the HSP plan directly translated into
MonetDB'’s physical algebra (MonetDB/HSP) and the execution
time of the CDP plan evaluated by RDF-3X. We additionally report
the execution time of its equivalent SQL rewriting when evaluated
by the standard MonetDB/SQL optimizer as described previously.

We also present in Table 6 the planning time needed by Algo-
rithm 1 alone, without evaluating the queries. The planning times

for the HSP are very short (between 100 and 200 microseconds).

Moreover, we expect the number of nodes on the variable graph
to be kept always small, thus making the maximum independent
set algorithm applicable. This is true becausehgable graph

consists only of the variables that appear twice or more in joins.

which HSP selects a random order for executing the merge and
hash joins, RDF-3X/CDP outperforms MonetDB/HSP up to one
order of magnitude (e.g., in SP2a). When the triple patterns yield
intermediate results of the same order of magnitude, join ordering
has little influence on the query execution time (e.g., in SP2b). In
the remaining queries although the HSP plans are not optimal w.r.t.
CDP, query execution time in MonetDB/HSP is always better than
RDF-3X/CDP up to one order of magnitude (e.g., in Y4). As a
matter of fact, the execution of all query operators in MonetDB
appears to be more efficient than in RDF-3X (exhibiting also the
limitation in the size of the datasets that can be processed in main
memory).

7. FUTURE WORK AND CONCLUSIONS

In this work we have introduced a set of heuristics for choos-
ing which triple patterns of a SPARQL query are more selective by
only looking at the syntactical form of the query, and not relying

Some more experimentation showed that HSP can process a vari©n any statistics of the stored data. We defined a variable graph
able graph of up to 50 nodes in less than 6ms. Such a graph impliesP@sed on the SPARQL join query and showed how to maximize

at least 100 joins which is the common limit for other traditional
optimizers found in relational engines.
The execution times for our experiment for the’8Bnch and

the number of merge-joins by reducing this problem to the prob-
lem of maximum weight independent set. Based on these ideas,
we introduced the first heuristics-based SPARQL optimizer, called

YAGO datasets are shown in Tables 7 and 8 respectively. The re-HSP. We have performed an extensive evaluation on the quality pf
ported times do not include the planning time (less than 4% of the the plans generated by HSP. We also compared the query execution
total execution time), the time to transform the constants of every ime achieved by HSP with two state of the art engines, namely
triple pattern to ids as well as the conversion of these ids back to RDF-3X and MonetDB. _ S
strings in the final query result. To speed up the resolution of the e Wish to investigate the effects of applying our heuristics in a
ids to URIs/literals and decompression thereof, RDF-3X sorts and distributed environment such as MapReduce and Hadoop. We also
groups the query results to decompress only one element per grouﬂntend to extenq our work to cope wnh_dlfferent relational sto_r-
of duplicates. This time is also not included in our measurements. @9€ schemas, instead of only the traditional approach of a triple
For the queries for which HSP and CDP produce the same plan table. Also_, we are W_orklr_lg to integrate our solutlpn with the Mon-
(SP1, SP3(a,b,c), SP4a, SP5, SP6 and Y3), with the exception 0fetDB. rlun-tlme optlmlzer in or'd'er to handle queries such as .Iarge
SP1, MonetDB/HSP could be up to two orders of magnitude faster star 10|n§) for whlch_our heurisics fail to _prc_>duce near to optimal
than RDF-3X/CDP (e.g., in SP6) and up to one order of magni- plans. Finally, we wish to extend our optimizer to include all fea-
tude faster than MonetDB/SQL (e.g., in Y3). In the case of SP1, tures of the SPARQL language, such asdieriONAL clause.
although the HSP plan is the same as CDP, its execution in Mon-
etDB is significantly slower. The same behaviour is also exhib- 8 REFERENCES
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